Kate E Galloway

SYNTHETIC BIOLOGY · REPROGRAMMING · MOLECULAR SYSTEMS BIOLOGY Massachusetts Institute of Technology, 25 Ames St 66-570A, Cambridge, MA 02420 Skatiegal@mit.edu | 🏟 gallowaylab.mit.edu | 💿: 0000-0001-7416-3193

Biography_

Katie Galloway is the W. M. Keck Career Development Professor in Biomedical Engineering and Chemical Engineering at the Massachusetts Institute of Technology. Her lab focuses on developing integrated gene circuits and elucidating the systems-level principles that govern cell-fate transitions with the goal of engineering cell and gene therapies. Galloway earned a PhD and an MS in Chemical Engineering from the California Institute of Technology, and a BS in Chemical Engineering from University of California at Berkeley. She completed her postdoctoral work at the University of Southern California. Her research has been featured in *Science, Cell Stem Cell, Cell Systems, Cell Reports, and Development*. She has won multiple fellowships and awards including the NSF CAREER, the BMES Cellular and Molecular Bioengineering Rising Star Award, Princeton's CBE Saville Lecture Award, NIH Maximizing Investigators' Research Award, the NIH F32, and Caltech's Everhart Award.

Education ____

California Institute of Technology PHD CHEMICAL ENGINEERING, MINOR BIOLOGY • Advisor: Dr. Christina D Smolke • Thesis: Development of RNA-based control systems and their application to the Saccharor responsive MAPK pathway	Pasadena, CA 2007 - 2012 nyces cerevisiae pheromone-
California Institute of Technology MS CHEMICAL ENGINEERING	Pasadena, CA 2005 - 2007
University of California, Berkeley BS СнемісаL Engineering • Graduated with Honors; NCAA Women's Crew Team; NCAA Women's Soccer Team	Berkeley, CA 2001 - 2005

Publications_

Principal Investigator

- 17. Peterman, EL, Ploessl, DS, and **Galloway, KE**. Accelerating diverse cell-based therapies through scalable design. *Annual Review of Chemical and Biomolecular Engineering*. (In press) 2024. Link
- 16. Galloway, KE. Changes in cell-cycle rate drive diverging cell fates. *Nature Reviews Genetics*. 2024. Link
- 15. Wang NB, Lende-Dorn BA, Adewumi HO, Beitz AM, Han P, O'Shea TM, and **Galloway, KE**. Proliferation history and transcription factor levels drive direct conversion. *bioRxiv*. 2023. Link *In revision at Cell Systems*.
- 14. Takahashi, K, and **Galloway, KE**. RNA-based controllers for engineering gene and cell therapies. *Current Opinion in Biotechnology*. 2023. Link
- 13. Johnstone, CP and **Galloway, KE**. Supercoiling-mediated feedback rapidly couples and tunes transcription. *Cell Reports*. 2022. Link
- 12. Cabera, A*, Edelstein, HI*, Glykofrydis, F*, Love, KS*, Palacios, S* Tycko, J*, Zhang, M*, Lensch, S, Shields, CE, Livingston, M, Weiss, R, Zhao, H, Haynes, KA, Morsut, L, Chen, YY, Khalil, AS, Wong, WW, Collins, JJ, Rosser, SJ, Karen Polizzi, K, Elowitz, MB, Fussenegger, M, Hilton, IB, Leonard, JN, Bintu, L, **Galloway, KE**, Deans, TL. The sound of silence: transgene silencing in mammalian cell engineering. *Cell Systems*. 2022. Link
- 11. Beitz, AM, Oakes, CG, and **Galloway, KE**. Synthetic gene circuits as tools for drug discovery. *Trends In Biotechnology*. 2021. Link

- 10. Johnstone, CP and **Galloway, KE**. Engineering cellular symphonies out of transcriptional noise. *Nature Reviews Molecular Cell Biology* 2021. Link
- 9. Johnstone, CP*, Wang, NB*, Sevier, SA, and **Galloway, KE**. Understanding and engineering chromatin as a dynamical system across length and time scales. *Cell Systems*. 2020. **These authors contributed equally to this work*. Link
- 8. Wang, NB, Beitz, AM, and **Galloway, KE**. Engineering cell fate: Applying synthetic biology to cellular reprogramming. *Current Opinion in Systems Biology*. 2020. Link

Postdoctoral

- 7. Babos, KN*, **Galloway, KE*,†**, Kisler, K, Zitting, M, Li, Y, Shi, Y, Quintino, B, Chow, RH, Zlokovic, BV, and Ichida, JK.† Mitigating antagonism between transcription and proliferation allows near-deterministic cellular reprogramming. *Cell Stem Cell*. 2019. **These authors contributed equally to this work.*†*Co-corresponding*. Link
- 6. Ichida, JK, Staats, KA, Davis-Dusenbery, BN, Clement, K, **Galloway, KE**, Babos, KN, Son, EY, Kiskinis, E, Atwater, N, Gu, H, Gnirke, A, Meissner, A, and Eggan, K. Comparative genomic analysis of embryonic, lineage-converted, and stem cell-derived motor neurons. *Development*. 2018. Link
- 5. **Galloway, KE** and Ichida, JK. Modeling neurodegenerative diseases and neurodevelopmental disorders with reprogrammed cells. Stem Cells, Tissue Engineering and Regenerative Medicine. D.A. Warburton, Ed. (World Scientific, New Jersey, 2015).
- 4. Franco, E and **Galloway, KE**. Feedback loops in biological networks. Computational Methods in Synthetic Biology. M. A. Marchisio, Ed. (Springer New York, 2015). Link

Graduate and Pre-graduate

- 3. **Galloway, KE**, Franco, E, and Smolke, CD. Dynamically reshaping signaling networks to program cell fate via genetic controllers. *Science*. 2013 Link
- 2. Chen, YY*, **Galloway, KE***, and Smolke, CD. Synthetic biology: advancing biological frontiers by building synthetic systems. *Genome Biology*. 2012. **These authors contributed equally to this work*. Link
- 1. Kostal, J, Mulchandani, A, **Gropp, KE**, and Chen, WA. Temperature Responsive Biopolymer for Mercury Remediation. *Environmental Science & Technology*. 2003. Link

Awards & Honors _____

2024	NSF CAREER Award, National Science Foundation
2023	Dudley A. Saville Lecturer, Department of Chemical and Biological Engineering, Princeton
2023	Rosalind Franklin Medal Finalist, Rosalind Franklin Society
2023	Cellular and Molecular Bioengineering Rising Star, Biomedical Engineering Society
2022-2025	W. M. Keck Career Development Professor in Biomedical Engineering, MIT ChemE
2019-2022	Charles and Hilda Roddey Career Development Chair, MIT ChemE
2017-2019	Maggie McKnight Russell Memorial Postdoctoral Fellow Award, ARCS
	ARCS, Awarded to one outstanding USC postdoctoral scholar
2018	2nd Place at the Annual UCI Postdoctoral Symposium, University of California, Irvine
	UCI, TED talk-style competition for open to all Southern California postdocs
2017	1st Place at the Annual Postdoctoral Symposium, USC Postdoctoral Association
	USC, TED talk-style competition
2011	Everhart Lecturer, Caltech Everhart Committee
	Caltech, Awarded yearly to three graduate students for research excellence
2006	Honorable Mention, National Science Foundation
	NSF, Graduate Research Fellowship Program
2001-2005	Scholar, Reagent's and Chancellor's Scholarship
	University of California, Berkeley, Top 1% of incoming students
2001-2005	Most Valuable Student, Elks Foundation
	Elks National Foundation, Top 500 students nationally

Professional Memberships _____

American Chemical Society American Institute of Chemical Engineers Biomedical Engineering Society Society for Biological Engineering International Society for Stem Cell Research

Professional Activities

2022-2024	Founder and Organizer, Boston Mammalian Synthetic Biology Symposium
2022-2024	Advisory Board, Cell Reports
2022-2024	Early Career Advisory Board, Stem Cell Reports
2020-2024	Organizing committee, Mammalian Synthetic Biology Workshop (mSBW)
2020-2023	Organizing committee, Epigenetics and Bioengineering (EpiBio)
2022-2023	Conference Chair, International Conference on Biomolecular Engineering (ICBE)
2022-2023	Organizing committee, Synthetic Biology, Evolution, Engineering, and Design (SEED)
2022-2024	Organizing committee, Synthetic Biology for Future Health-Wellcome Trust
2019-2023	Theme and session chair, AIChE Annual Meeting, Bioengineering (Division 15)
2021-2023	Session chair, American Chemical Society (ACS)-BIOT
	Adhoc reviewer, Science, PNAS, Cell Systems, Nucleic Acids Research, Nature
2019-2023	Communications, Cell Chemical Biology, Science Advances, Cell Reports, ACS Synthetic
	Biology, eLife, Oxford Synthetic Biology, Current Opinion in Biomedical Engineering

Teaching Experience_____

2019-2024	10.10: Introduction to Chemical Engineering, Instructor, 6.5/7	MIT
2021-2022	10.521: Design Principles in Mammalian Systems + Synthetic Biology, Instructor, 6.5/7	MIT
2020-2024	UROP: "How to Science" + Computational modeling of gene circuits, Instructor	MIT

Outreach_____

Faculty Host, Graduate Women in Chemical Engineering (GWiCHE) monthly coffee hour
Mentor, MIT Chemical Engineering Rising Stars Program
Developer and instructor, Tutorial series: Modeling gene circuits + basic research methods
STEM Speaker, Warren High School AVID club; college-prep for first-gen students