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RNA-based controllers for engineering gene and cell 
therapies
Kei Takahashi and Kate E Galloway

Engineered RNA-based genetic controllers provide compact, 
tunable, post-transcriptional gene regulation. As RNA devices 
are generally small, these devices are portable to DNA and RNA 
viral vectors. RNA tools have recently expanded to allow 
reading and editing of endogenous RNAs for profiling and 
programming of transcriptional states. With their expanded 
capabilities and highly compact, modular, and programmable 
nature, RNA-based controllers will support greater safety, 
efficacy, and performance in gene and cell-based therapies. In 
this review, we highlight RNA-based controllers and their 
potential as user-guided and autonomous systems for control 
of gene and cell-based therapies.
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Introduction
Over the last decade, advances in genome engineering, 
viral vectors, and stem cell biology have massively ex-
panded the therapeutic potential of engineered cells. An 
expanding array of cell-based therapeutics is entering 
clinical trials for treatment of cancers [1–3], neurode-
generative disease [4], diabetes [5,6], and blood dis-
orders [7,8]. Achieving the best safety and performance 
for gene and cell-based therapies requires tools for 
tuning, tailoring, and controlling expression of trans-
genes. Tapping into information-rich streams within the 
cell provides the potential to coordinate synthetic and 
native genetic programs and to build both autonomous 
and clinician-mediated control of gene and cell-based 
therapies. As a highly compact, modular, portable, and 

programmable substrate, RNA serves an ideal medium 
for interfacing native and synthetic programs to extract 
information and to program cellular responses for op-
timal control of gene and cell-based therapies (Figure 1).

RNA as a highly compact, modular, portable, 
and programmable regulator
Over the last two decades, the expansion of synthetic 
biology has fueled the engineering of novel RNA-based 
devices and systems for regulating gene expression 
[9–24]. RNA-based genetic tools offer unique properties 
for building control into gene and cell therapies. RNA- 
based devices offer fast, compact, and modular gene 
regulation that is programmable. Importantly, RNA- 
based devices are typically small at a size of hundreds of 
nucleotides [25,26], which enables incorporation with 
transgenes and DNA-based regulators with negligible 
impact on delivery and integration efficiency in recipient 
cells. Additionally, the mechanism of regulation and 
small size makes RNA controllers compatible with a 
range of delivery methods, including nonintegrating viral 
vectors [25,27–30]. As many RNA control systems do not 
rely on auxiliary proteins, RNA-based systems can offer 
control without production of non-native proteins that 
may trigger an immune response through antigen pre-
sentation. Thus, RNA-based systems offer minimal im-
munogenicity compared with protein-based systems.

Ligand-responsive riboswitches for user- 
guided control of transgenes
Riboswitches are biochemically responsive gene 
switches that are composed of RNA. Formally identified 
two decades ago, native riboswitches enable bacteria to 
sense and respond to a diversity of metabolites by 
modulating transcript stability or translation rate to in-
duce changes in gene expression [31–34]. Riboswitches 
consist of three modules: (1) an aptamer domain that 
binds the small molecule, (2) an actuator for RNA pro-
cessing, and (3) a communication module that transmits 
information between the aptamer and the ribozyme 
(Figure 2) [14,35,36]. Often located in the 5’ un-
translated region in bacterial genes, native riboswitches 
can sequester the ribosome binding site in response to 
metabolite binding to reduce expression. Alternatively, 
metabolite binding to RNA can induce catalytic cleavage 
and degradation of the transcript [37,38].

The modular nature of riboswitches supports engineering 
of novel riboswitches via integration of aptamers that 
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serve as ‘sensors’ with ‘actuators’ (Figure 2). Actuators 
transmit molecular binding events at the sensor into 
changes in RNA activity that manifest as changes in gene 
expression. Engineered riboswitches use a diverse array of 
mechanisms of RNA regulation (Figure 2). 

Binding of metabolites to trigger riboswitches is medi-
ated by aptamers, RNA sequences that offer precise 
molecular discrimination through structured binding  
[39]. These structure-dependent RNA tools can be ea-
sily programmed through varying the nucleotide se-
quence. For example, RNA aptamers, which bind with 
their corresponding target molecules, have been used as 
molecular sensors and can be engineered to bind with a 
specific target molecule (e.g. theophylline, tetracycline, 

guanine, and folinic acid) by changing the sequence of 
binding domain. Systematic Evolution of Ligands by 
Exponential Enrichment is a method used to engineer 
novel RNA aptamers responsive to various types of 
chemical or biological inputs. An increasing number of 
molecules, including small molecules, RNAs, and pro-
teins, can be detected by aptamers [39,40]. 

One such RNA controller, the ribozyme-based riboswitch, 
regulates gene expression in response to small molecules, 
RNAs, and proteins [17,26,28,41]. Engineered RNA- 
based genetic controllers such as ribozyme switches 
control gene expression post-transcriptionally. Binding of 
a cognate ligand increases or decreases transcript stability, 
resulting in increased or decreased gene expression [28]. 

Figure 1  
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RNA-based tools and their application to gene and cell therapy. Since RNA-based tools are compact in size compared with DNA- and protein-based 
tools, RNA-based tools can be easily integrated into various types of genetic delivery methods. Thus, RNA-based tools are highly compatible with 
gene- and cell therapy application.   
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As ribozyme switches are generally small and do not re-
quire protein cofactors, these elements have been used to 
control gene expression from DNA and RNA viral vectors  
[29,42]. Theophylline-responsive ribozyme switches were 
able to control overexpression of a cytokine, enabling li-
gand-inducible expansion of T cells engineered with 
chimeric antigen receptors [43]. In a different approach, 
ligand-responsive microRNA-based controllers targeted 
native cytokines to mediate expansion of T cells [44]. 
Riboswitches such as ligand-responsive ribozymes rely on 
relatively small differences in binding energetics to bias 
RNA folding toward inactive or active states. Owing to 
the need to switch between folded states, the dynamic 
range of these devices remains small and thermo-
dynamically limited. 

Alternative mechanisms of RNA regulation that allow 
greater signal amplification may improve switch range. 
For example, splice-based riboswitches offer large dy-
namic ranges [45]. In splice-based switches, the 

riboswitch is located within an intron in the pre-mRNA. 
The switch adopts different conformations in the pre-
sence or absence of guanine. These conformational 
states influence the pre-mRNA splicing process to dic-
tate which combination of exons is included in the ma-
ture mRNA. The splicing switch may achieve dynamic 
ranges that are 5–10-fold higher than similar ribozyme- 
based switches [46–48]. 

RNA-responsive RNA controllers for 
detection of transcriptional state 
RNA-responsive controllers allow for detection of en-
dogenous transcripts. Recently, the RNA-responsive 
controllers have expanded with the advent of Cas13- 
mediated systems [49,50], adenosine deaminases acting 
on RNA (ADAR) systems [9–11,51], eToeholds [12], and 
split ribozymes [13]. Detection of endogenous tran-
scripts enables RNA controllers to actuate changes in 
response to specific transcriptional profiles. In sensing 
transcriptional profiles, cells can respond to diverse 

Figure 2  
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Modular composition of riboswitches using sensor and actuator modules. Riboswitches are composed of sensors and actuators that interact through 
the communication module (transmitter). At the right, a ribozyme-based riboswitch in the 3’ untranslated region degrades the eukaryotic transcript by 
removal of the poly-A (AAA) tail. Addition of the small molecule reduces ribozyme cleavage, stabilizing the transcript and increasing output.   
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states, cues, disease profiles, and events. Cas13 uses a 
guide RNA to selectively identify RNA species. Active 
Cas13 targets RNA for degradation. Alternatively, an 
inactive Cas13 can be used to recruit the ADAR enzyme 
for editing of the target transcript [49]. More recently, 
ADAR-based systems have used specific synthetic and 
endogenous transcripts that trigger activation of a 
transgene via ADAR-mediated editing [9–11,51]. In the 
presence of the target RNA (e.g. the desired molecular 
trigger), ADAR induces editing of a stop codon, allowing 
translation of the regulated transgene. While native and 
synthetic RNAs can serve as trigger species, robust ac-
tivation requires expression of the trigger transcript to be 
relatively abundant as the editing frequency remains 
low. To solve the challenge of limited dynamic range 
from low editing efficiency, a feedback loop can be in-
troduced to amplify editing and improve the dynamic 
range of an ADAR-based system [11]. As dynamic range 
continues to be a challenge for some forms of RNA- 
based regulation, network approaches such as the in-
troduction of positive feedback loops may make RNA- 
based regulation tractable for cellular processes that re-
quire large fold changes in transgene expression. 

Relying on only endogenous protein machinery, Zhao 
et al. engineered cis-acting a synthetic internal ribosomal 
entry site (IRES), eToeholds, that senses and responds 
to the presence of target RNA by altering the rate of 
mRNA translation [12]. The eToehold system controls 
accessibility of ribosomes to the translation initiation site 
of the mRNA encoding an output gene by integrating a 
short complementary RNA sequence into the IRES to 
form inhibitory loops. Binding between the target RNA 
and inhibitory loops allows activation of translation from 
the IRES, triggering expression of the transgene [12]. 

In terms of RNA sensing technology, guide RNAs pro-
vide programmable control of CRISPR-mediated gene 
regulation and genome editing. Hochrein et al. con-
trolled guide RNA activity by integrating target RNA- 
binding motif into the gRNA and demonstrated target 
RNA-responsive transcriptional activation [52]. In mi-
crobial systems, Siu et al. demonstrated programmable 
and multiplexed gene expression regulation by using 
engineered gRNA equipped with toehold riboswitches 
integrated into gRNA scaffolds [53]. 

RNA control for DNA- and RNA-based vectors 
Nonintegrating viruses, including adeno-associated 
viruses and RNA-based viruses, represent the next 
generation of translational vectors for gene and cell- 
based therapies [29,42,54,55]. While AAVs significantly 
improve safety over other DNA-based viruses such as 
retro- and lentiviruses, concerns remain around rare, 

unpredictable patterns of genomic integration. Alter-
natively, cytoplasmically localized RNA-based viruses, 
which do not transit through DNA intermediates, avoid 
the risk of unintended genomic integration. In addition 
to an improved safety profile, RNA-based viruses display 
unique tropism, offering the potential to selectively 
target in vivo cell populations from neurons to cardio-
myocytes [56]. However, a limited set of tools to regulate 
gene expression from RNA-based viruses has slowed the 
broad adoption of these vectors. 

To date, a number of major viral vectors such as ade-
noviral and adeno-associated viral (AAV) vectors have 
been engineered to deliver a genetic payload, including 
a therapeutic transgene to mammalian cells. Ketzer et al. 
first used theophylline riboswitches in adenoviral vectors 
to control transgene expression and viral replication [57]. 
Similarly, riboswitch-mediated transgene expression 
control from adenoviral and AAV vectors has been de-
monstrated by Strobel et al. and Reid et al. [42,58]. 
Strobel et al. increased the yields of the AAV vectors. By 
tuning transgene expression, they were able to increase 
production by 23-fold using a guanine-responsive ri-
boswitch. Reid et al. controlled the intraocular con-
centration of antivascular endothelial growth factor 
synthetic protein (Eylea), which is used as a therapeutic 
for wet age-related macular degeneration. This AAV 
vector expressed Eylea under the control of a tetra-
cycline-responsive ribozyme and inhibited choroidal 
neovascularization in a mouse model of wet AMD. As 
demonstrated, the compactness of RNA devices allows 
for user-defined control of cell and gene therapies with 
minimal expansion of the encoded genetic cargoes. 

Future opportunities for RNA-based 
controllers for cell and gene therapies 
RNA-based tools can improve the efficiency and safety of 
gene and cell therapies. Some challenges and opportu-
nities remain for predictably engineering functions with 
RNA-based controllers. Computational models and che-
mical probing can improve our understanding of struc-
tures and dynamics [59]. Predicting the function of de 
novo RNA sequences remains challenging, limiting for-
ward design. Machine learning techniques have already 
shown remarkable progress in the design of novel and 
desired proteins. Similarly, leveraging the power of ma-
chine learning can substantially enhance our ability to 
predict RNA structure and function within the intricate 
cellular environment [60]. Integrating known endogenous 
mechanisms and pathways that affect the RNA’s structure 
and function will improve the predictive potential of 
machine learning models. By developing machine 
learning models that can account for the multifaceted 
factors affecting RNA behavior in vivo, we can improve 
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the accuracy of predictions and increase the reliability of 
RNA-based tools in gene and cell therapies. 

By limiting transgene expression, RNA controllers offer a 
mechanism to achieve performance in polyclonal cell 
populations by constraining transgene expression across 
cells bearing different vector copy numbers. Additionally, 
as cell state can substantially influence transcriptional 
activity, RNA controllers can limit the variance in-
troduced through cell-specific differences in transcription 
rate. While gene therapy necessarily relies on a control 
system that performs within polyclonal populations, cell 
therapy can allow for isolation of clones that perform the 
desired therapeutic functions before delivery. However, 
RNA controllers may accelerate cell engineering proce-
dure by controlling for variance in gene expression and 
thus eliminating the need for time-intensive screening, 
isolation, and expansion of clones. By rejecting natural 
sources of noise, RNA controllers will improve the pre-
dictability and performance of designs. By ensuring ro-
bust performance, RNA controllers will support more 
rapid development of cell therapies and expand the so-
phistication and precision of gene therapies. 

Harnessing the incredible potential of RNA-based con-
trollers will open new opportunities in the future of cell 
and gene therapies. With the expansion of tools for the 
detection of native transcripts, we anticipate the devel-
opment of systems that finely tune therapeutics to un-
ique cell states, disease-specific contexts, and patient- 
specific genotypic variations. Moreover, RNA-based 
controllers offer the possibility of clinician-guided con-
trol and intervention through tunable switches and 
safety mechanisms such as kill switches [20,43]. As we 
continue to develop these tools, there is an exciting 
opportunity to expand the dynamic range and test their 
efficacy in a myriad of different contexts, further en-
hancing their clinical utility. While the field is advancing 
rapidly in detection of endogenous RNAs, protein-re-
sponsive RNA-based controllers remain somewhat lim-
ited. This limitation presents an ongoing opportunity for 
improvement. Harnessing the modular and adaptable 
nature of RNA, RNA-based controllers will expand the 
range and potential of cell and gene therapies. 
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