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Feedback Loops in Biological Networks

Elisa Franco and Kate E. Galloway

Abstract

We introduce fundamental concepts for the design of dynamics and feedback in molecular networks
modeled with ordinary differential equations. We use several examples, focusing in particular on the
mitogen-activated protein kinase (MAPK) pathway, to illustrate the concept that feedback loops are
fundamental in determining the overall dynamic behavior of a system. Often, these loops have a structural
function and unequivocally define the system behavior. We conclude with numerical simulations high-
lighting the potential for bistability and oscillations of the MAPK pathway re-engineered through synthetic
promoters and RNA transducers to include positive and negative feedback loops.
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1 Introduction

Cells sense their environment and make decisions through coordi-
nated molecular events. The dynamic interactions among nucleic
acids, enzymes, and small molecules define such molecular events
and specify their possible outcomes. For example, a set of reactions
among a set of enzymes and genes may trigger transient, sustained,
or periodic responses in other enzymes, depending on external
stimuli [1]. Feedback among molecular components plays a crucial
role in defining such complex behaviors, and synthetic feedback
loops are routinely designed to redirect cellular responses and
fate [2].

Mathematical models capturing the behavior of a molecular
system are useful to support and guide experiments [3]. Feedback
loops may result in counterintuitive behaviors in a system, thus a
combination of numerical and theoretical analysis of a validated
model can yield important insights, for example helping to identify
the key species and parameters. Models can often be simplified to
focus on such key reactions, and it may be possible to achieve valid
conclusions on the behavior of the system without having to resort
to extensive numerical simulations [4].
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In this chapter, we focus on classical methods from dynamical
systems and control theory that can be used on ordinary differential
equation (ODE) models of molecular networks. We begin by
briefly introducing ODE models through the mitogen-activated
protein kinase (MAPK) pathway, for which a hierarchy of models
of different complexity is available in the literature [4–6]. ODE
models for molecular networks always include nonlinear terms: we
introduce the concept of linearization, through which one can
systematically explore the behavior of a system in a neighborhood
of its stationary points. We illustrate this simple method with several
examples, in particular the MAPK pathway.

In Subheading 4.1 we highlight the concept that feedback
loops can unequivocally determine the possible dynamic responses
of a system. Some of the first and best known mathematical con-
jectures in this area were formulated by R. Thomas [7], and focus
on the presence of positive or negative feedback loops in the
linearized model of a system (loops in the Jacobian graph): a
negative feedback loop is a necessary condition for stable periodic
behavior, while a positive loop is a necessary condition for multi-
stationarity (see [8] for a very thorough survey). These conjectures
were proved in [9] and [10], with several further extensions and
refinements [11–14]. While Thomas’ conjectures are only neces-
sary, they have been helpful in guiding the design of numerous
synthetic molecular circuits [15–24]. We conclude with numerical
simulations exploring the potential for bistability and oscillations of
the MAPK pathway in yeast, re-engineered to include artificial
positive and negative feedback through synthetic promoters and
RNA gates [25].

2 Dynamic Models for Molecular Systems

Deterministic ODEs are commonly adopted in conventional engi-
neering fields: ODEs are easily derived directly from the laws of
physics, thermodynamics, and electromagnetism, and are a
good description of macroscopic systems where stochastic effects
are negligible. Molecular systems operating at high copy numbers
have been successfully modeled using ODEs; for gene networks,
alternative descriptions include stochastic equations or boolean
models [3]. The MAPK pathway is a well-known signal transduc-
tion network which has been successfully modeled using ODEs: we
will use it as our example system throughout this chapter.

One can identify two main approaches to the derivation of
ODE models for biochemical systems. The first is a mechanistic
approach, whereby the modeler tries to identify all possible chemi-
cal reactions that contribute to the process behavior; this approach
is particularly fruitful in well-characterized systems (for example,
understood model pathways or in vitro networks), but the resulting
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models may be extremely complex and require heavy numerical
treatment. The famous Huang–Ferrell model of the MAPK path-
way [5] is one of the best examples of this approach. A list of ten
reactions is used to model the three-stage, double phosphorylation
pathway, and build 18 ODEs with 30 parameters using the
mass action kinetics formalism. To illustrate this process, we con-
sider solely the activation stage of the cascade, where MAPKKK,
which we denote as m3K for brevity, is activated (m�

3K ) and inacti-
vated, respectively, by two “input” enzymes u1 and u2. These
reactions are:

m3K þ u1 Ð
f1

r1
m3K � u1 *

k1
m�

3K þ u1;

m�
3K þ u2 Ð

f2

r2
m�

3K � u2 *
k2

m3K þ u2:

The corresponding ODEs associated with these isolated reactions
for M3K activation/inactivation are:

d m3K

dt
¼ �f1m3K u1 þ r1m3K � u1 þ k2m

�
3K � u2;

d m3K � u1

dt
¼ þf1m3K u1 � ðr1 þ k1Þm3K � u1;

d m�
3K

dt
¼ �f2m

�
3K u2 þ r2m

�
3K � u2 þ k1m3K � u1;

d m�
3K � u2

dt
¼ þf2m

�
3K u1 � ðr2 þ k2Þm�

3K � u1:

However, when considered in the context of the entire pathway,
M �

3K binds and phosphorylatesM2K: thus, the ODEs describing the
dynamics of M �

3K include additional second order terms. This
example highlights the rapidly growing size and complexity of
detailed models built using mass action kinetics. Nevertheless, it
must be noted that the mass action formalism allows to derive
ODEs systematically once reactions are specified, and many free
software tools are available to automatically perform this opera-
tion [26, 27].

The second approach is phenomenological and driven by
sensible approximations that describe qualitatively the observed
dynamics; this approach generally yields models more amenable
to analytical treatment, which however may not capture faithfully
the system’s dynamics and ignore several sources of uncertainty.
Using a combination of mathematical analysis and numerical
simulations supported by experimental data, the Huang–Ferrell
model can be collapsed into a simpler, gray-box model where
several intermediate reactions are captured by cooperative Hill
functions. For instance, the dynamics of a kinase species x being
doubly phosphorylated by its input u (where the input is
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the upstream kinase), yielding active kinases xp and xp p, can be
written as [28]:

dx

dt
¼ �uk1

x

K1 þ x
þ V2

xp
K2 þ xp

;

dxp
dt

¼ uk1
x

K1 þ x
� V2

xp
K2 þ xp

� uk3
xp

K3 þ xp
þ V4

xpp
K4 þ xpp

;

dxpp
dt

¼ uk3
xp

K3 þ xp
� V4

xpp
K4 þ xpp

;

where Vi are the maximal enzyme rates, ki are the catalytic rate
constants, and Ki are the Michaelis constants [28]. The readers
familiar with Michaelis–Menten enzyme kinetics will immediately
recognize that the functional terms in the equations above come
from a simple assumption of timescale separation between the
binding/unbinding dynamics of an enzyme to its substrate, and
the catalytic step of the reaction. By solving numerically the equa-
tions above for plausible reaction parameters we find that, as a
function of a constant input concentration u, the doubly phos-
phorylated kinase xpp at the end of the cascade exhibits a switch-
like response. If matching steady-state behavior is the objective of
the model, one could further collapse the equations above into a
first order system that relates the input u with the output of the
cascade m ¼ xpp:

dm

dt
¼ αun

Kn
M þ un

�m;

where now m indicates the concentration of doubly phosphory-
lated kinase, and parameters α, K, and n are chosen to capture to
the observed input/output relationship.

Based on this simplified model for the double phosphorylation
process of each kinase, one can assemble a naive phenomenological
model for the entire cascade:

dm3

dt
¼ α3

un3

Kn3

M3 þ un3
�m3

dm2

dt
¼ α2

mn2

3

Kn2

M2 þmn2

3

�m2

dm1

dt
¼ α1

mn1

2

Kn1

M1 þmn1

2

�m1:

(1)

Later we will use this simplified model to illustrate control and
dynamical systems theory methods to analyze its behavior. A
more accurate, yet simple, model of the pathway is proposed
in [29], including double phosphorylation steps for each kinase.
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3 Analysis of Dynamic Behaviors

We can write the ODE model of a generic molecular process as:

dx

dt
¼ f ðx;uÞ;

xð0Þ ¼ x0;
(2)

where x is a vector in Rn whose components are the variables of
interest in the model. In a system of molecules, these components
are concentrations. Vector x describes the behavior in time of the
system, and it is also called the state vector. Vector u in Rm repre-
sents external inputs to the system, for example concentrations of
inducers or activating enzyme species. Function f(x, u) captures the
interactions among the chosen dynamic variables and the inputs.
Finally, the problem includes a specification of initial conditions (or
initial state) in the vector x0.

Mostmodels ofbiomolecular phenomena arenonlinear: thus, it is
difficult (with few exceptions) to derive analytical predictions of their
dynamics. The most general way to handle nonlinear systems is to
analyze their dynamics in a neighborhood of their equilibriumpoints.

3.1 Linearization Linearization analysis consists in approximating the behavior of a
nonlinear system in a neighborhood of its equilibrium points using
its linearized dynamics; a brief introduction to this technique is
provided in this chapter, and the reader should refer to [30, 31]
for more details.

The equilibrium points of the general dynamical system (Eq. 2)
for a given value of external inputs u are defined as the states x such
that f ðx;uÞ ¼ 0. In other words, if the system’s state is precisely x,
all future states will remain equal to x.

As a simple illustrative example, consider the differential
equation:

dx

dt
¼ ux � x2 (3)

If we set _x ¼ 0, we find the condition x(u � x) ¼ 0, which is
satisfied for x ¼ 0; x ¼ u. Once the system’s equilibrium has been
found, we can write a Taylor series approximation for the system’s
dynamics near each equilibrium, stopping at the first order:

dx

dt
¼ f ðx;uÞ � f ðx;uÞ

zfflfflffl}|fflfflffl{¼0

þ @f ðx;uÞ
@x

����
x¼x;u¼u

ðx � xÞ

þ @f ðx;uÞ
@u

����
x¼x;u¼u

ðu � uÞ

� Jxðx � xÞ þ Juðu � uÞ;
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where Jx and Ju are constant scalars or matrices that capture the
differential behavior of the system near the equilibrium.
This procedure is the first step of linearization. Now with a change
of variable, defining ξ ¼ ðx � xÞ and ω ¼ u � u we can rewrite the
system as:

dξ

dt
¼ Jxξþ Juω;

which is a linear dynamical system describing the near equilibrium
dynamics of the original nonlinear system.

Going back to the illustrative example at Eq. 3, where

f ðx;uÞ ¼ ux � x2 we find that Jx ¼ u � 2x, and Ju ¼ x. Therefore,
the approximated system’s dynamics near each equilibrium point are:

x ¼ 0 ) dξ

dt
¼ uξ; x ¼ u ) dξ

dt
¼ �uðξ� ωÞ;

where ξ and ω are values of the state and the input near the
equilibrium.

For models defined by several states and differential equations,
linearization yields a linear system described by two matrices:

Jx ¼

@f1
@x1

@f1
@x2

. . .
@f1
@xn

@f2
@x1

@f2
@x2

. . .
@f2
@xn

..

. ..
. . .

. ..
.

@fn
@x1

@fn
@x2

. . .
@fn
@xn

2
66666666664

3
77777777775
jx¼x;u¼u

; Ju ¼

@f1
@u1

@f1
@u2

. . .
@f1
@um

@f2
@u1

@f2
@u2

. . .
@f2
@um

..

. ..
. . .

. ..
.

@fn
@u1

@fn
@u2

. . .
@fn
@um

2
66666666664

3
77777777775
jx¼x;u¼u

:

Matrix Jx is known as the system’s Jacobian matrix. If the system of
ODEs hasn equations (states), the Jacobian is always ann� nmatrix;
Ju is an n � mmatrix, wherem is the number of external inputs.

Once the system has been linearized, we can investigate its local
behavior with standard linear analysis methods. In particular, by
finding the eigenvalues of the Jacobian we can immediately estab-
lish if the equilibrium is stable or unstable. Eigenvalues λ and
eigenvectors v of a matrix A are defined by the following
relationship:

Av ¼ λv:

If A is viewed as a linear map, eigenvectors represent special direc-
tions in the domain of A which remain unaltered in the codomain,
except for scalar transformations. The eigenvalues of a matrix A are
the roots λ of the polynomial equation:

det A � λIdð Þ ¼ 0;

where I d is the identity matrix of appropriate dimension. It is
well known [31, 32] that the fundamental solution of a matrix
ODE system _x ¼ Ax þ Bu is determined by the matrix exponential
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Φ ¼ eAt. (The natural response of the system, when u ¼ 0, is

xðtÞ ¼ eAtx0). In most practical cases, a real or complex matrix A
is similar to a diagonal matrix Δ whose elements on the diagonal are
the eigenvalues of A: A ¼ P Δ P�1, where P is a matrix of eigen-
vectors associated with the eigenvalues of A. This means that we
can rewrite the fundamental solution matrix Φ ¼ eAt ¼ PeΔtP�1

(the matrix exponential of a diagonal matrix is simply a diagonal
matrix whose elements are the corresponding exponentials). Thus,
the behavior of a linear system is given by linear combinations of
exponential functions, whose convergent or divergent behavior
exclusively depends on the sign of the eigenvalues. By determining
the eigenvalues, and most importantly their sign, we can classify the
system as stable, when all eigenvalues have a negative sign; when at
most one zero eigenvalue is present, the system is classified as
marginally stable; when at least one eigenvalue is positive, the
system is unstable.

Finding the eigenvalues of Jx at each equilibrium allows us to
build an approximate map of how the system behaves. Returning to
our simple scalar example at Eq. 3:

x ¼ 0 ) Jx ¼ u; x ¼ u ) Jx ¼ �u

Therefore, for nonzero u, the system always has one stable and one
unstable equilibrium.

3.1.1 Linearization

Example: The MAPK

Cascade

We can carry out a linearization analysis of the MAPK cascade
model (Eq. 1), choosing αi ¼ 1 and KMi ¼ 1 for i ¼ 1, 2, 3, and
n3 ¼ 1, n2 ¼ n1 ¼ 2:

dm3

dt
¼ u

1þ u
�m3

dm2

dt
¼ m2

3

1þm2
3

�m2

dm1

dt
¼ m2

2

1þm2
2

�m1:

First, we find the equilibria by setting each derivative to zero. It is
very easy to find that there is a single equilibrium where

m3 ¼ u=ð1þ uÞ, m2 ¼ m3
2=ð1þm3

2Þ, and m1 ¼ m2
2=ð1þm2

2Þ.
The Jacobian of the system is:

Jx ¼
�1 0 0
α �1 0
0 β �1

2
4

3
5; (4)

where α ¼ 2m3

ð1þm3
2Þ2 and β ¼ 2m2

ð1þm2
2Þ2 . The eigenvalues can be read

directly on the diagonal of Jx, because it is a lower triangular matrix.
We find λ1 ¼ λ2 ¼ λ3 ¼ �1. Therefore, this system is stable near its
single equilibrium point. Given the structure of the Jacobian and of
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the ODEs, the equilibrium is stable regardless of the choice of
parameters made. Therefore, this simplified model of the cascade
suggests that its stable dynamic behavior is robust with respect to
uncertainty in the parameters. We will later see that if the cascade
includes additional interactions among the kinases, which generate
feedback loops, we will not be able to reach the same conclusion.

3.1.2 Phase Portraits Phase portraits are extremely useful graphical representations, in
particular for models of low dimensions. The solution trajectories
are parameterized over time, and plotted contrasting different
components [31]. These graphs can be quickly traced qualitatively,
and numerous numerical routines are available for quantitative
plots (see, for example, MATLAB’s pplane function).

For illustrative purposes, one typically considers second order
linear systems, such as:

dx

dt
dy

dt

2
664

3
775 ¼ A

x

y

" #
:

The system’s phase portrait simply consists in a plot where x(t) is
graphed versus y(t) on a plane. This plot can be quickly sketched by
identifying the eigenvalues and eigenvectors of matrix A. The real
part of the eigenvalues determines whether trajectories converge
toward the origin as an equilibrium point (negative real part, equi-
librium is stable) or diverge (positive real part, equilibrium is unsta-
ble); real eigenvectors define invariant subspaces on which the
behavior of the trajectory is uniquely determined by the associated
eigenvalue. Figure 1 shows typical examples of two-dimensional
phase portraits, such as sinks (a), sources (b), and hyperbolic
points (c). When eigenvalues are complex conjugates, trajectories
spiral in or out of the origin depending on the sign of the real part
(Fig. 1d,e); if the real part is zero, the system is classified as a center,
i.e. a system whose trajectories oscillate without damping (Fig. 1f).

The only equilibrium of the MAPK pathway model considered
in Subheading 3.1.1 is a sink (Fig. 1a), because all the eigenvalues
of the Jacobian are real and have negative real part.

3.2 Bifurcations If one or more parameters of the system vary, the number of equili-
bria and their local stability properties may change. In a biological
network binding rates may vary as a function of environmental
stimuli and result in dramatically different dynamic responses: for
instance, there is evidence that MAPK pathway response can exhibit
a variety of responses depending on the input hormones [33], which
affect binding affinities of its components. The pathway is known to
exhibit a multistationary (multiple equilibria either stable or unsta-
ble) or oscillatory responses [34]. The variation of one or more
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parameters followed by a change in dynamics is generally termed a
bifurcation phenomenon. Classical examples are the saddle-node
and the Hopf bifurcation [31]. Subheading 4.1 provides examples
of bifurcations in a biological network with different types of
feedback.

4 Feedback in Synthetic Biological Networks

Gene networks rely on feedback to regulate expression of proteins,
reduce noise, and guarantee desired dynamic behaviors [35–38].
The target behavior of engineered networks depends as critically on
the use of feedback: in this section we provide several examples of
networks where the design of positive or negative feedback allows
to achieve dramatically different behaviors. We begin with a general
two-gene model which has been used to describe a variety of simple
synthetic and natural networks; we show that in some cases the
feedback topology is the key player in determining the dynamic
outcomes of the system [7, 39]. Then, we highlight the effects of
synthetic feedback loops on a model for the MAPK signaling
pathway in yeast, which has recently been engineered to re-route
mating behaviors [25].

x

y

x

y

x

y

x

y

x

y

x

y
a b c

d fe

Fig. 1 Two-dimensional phase portraits. (a) Sink (all eigenvalues have negative real part). (b) Source (all
eigenvalues have positive real part). (c) Hyperbolic point (one eigenvalue has positive real part, one eigenvalue
has negative real part; eigenvectors coincide with the axes). (d) Stable spiral sink (eigenvalues are complex
conjugate and have negative real part). (e) Unstable spiral sink (eigenvalues are complex conjugate and have
positive real part). (f) Center (eigenvalues are pure imaginary, the system is marginally stable)
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4.1 Feedback Loops

Reshape the Dynamic

Behavior of a System

We consider a standard model for transcription and translation of
two genes, where proteins reciprocally modulate their expression
forming a feedback loop. Similar models are commonly encoun-
tered in the literature (see, for instance, [19, 22]). For illustrative
purposes, we use a nondimensional model (see Note 1):

_r1 ¼ γ1 þH1ðp2Þ � r1; _p1 ¼ β1r1 � p1; (5a)

_r2 ¼ γ2 þH2ðp1Þ � r2; _p2 ¼ β2r2 � p2; (5b)

where, for i ¼ 1, 2, ri are RNA species concentrations; pi are pro-
tein concentrations; Hi(� ) are Hill functions, and all Greek letters
denote reaction rates that are positive scalars.

Depending on the regulatory action and feedback created by
the protein transcription factors, and thus depending on the type of
Hill function, the network presents a different number of equilibria
and different possible dynamic behaviors. For example, suppose

H1ðp2Þ ¼ α1
pn
2

1þpn
2
and H2ðp1Þ ¼ α2

pn1
1þpn

1
: this is a two-gene positive

feedback loop, which is often encountered in developmental net-
works [40, 41]. The Jacobian of the system is:

J ¼

�1 0 0 @H1

@p2

β1 �1 0 0

0 @H2

@p1
�1 0

0 0 β2 �1

2
66664

3
77775; (6)

where @Hi=@pj ¼ αi
npn�1

j

ð1þpn
j
Þ2 ; ði; jÞ 2 fð1;2Þ; ð2; 1Þg. Note that the

Jacobian entries, evaluated at a positive equilibrium, are sign defi-
nite, i.e. they do not change sign for arbitrary choices of the
(positive) parameters αi, βi, and n.

The Jacobian sign pattern is thus a “structural” property of this
system, and it can be associated with a graph: nodes correspond to
the concentrations of biochemical species and are interconnected
by positive (+1) or negative (�1) arcs according to the
corresponding Jacobian entries, as shown in Fig. 2a. Thus, the
positive or negative sign of the loops generated does not depend
on the specific choice of the parameters.

We can derive expressions for the equilibria of the system,
which are given by the intersections of the two equilibrium condi-
tions (Fig. 2a, top row):

p1 ¼ β1 γ1 þ α1
pn2

1þ pn2

� �
; p2 ¼ β2 γ2 þ α2

pn1
1þ pn1

� �
:

For n ¼ 1 there is an intersection with p1 and p2 positive. For
n > 1, the system may admit multiple, typically three, positive
equilibria. For an assigned value of n, we consider one equilibrium
and we evaluate its stability properties by finding the eigenvalues of
the Jacobian, which are the roots of its characteristic polynomial
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ðs þ 1Þ4 �K ¼ 0; where K ¼ β1β2
@H1

@p2

@H2

@p1
> 0: (7)

Note that K explicitly depends on parameters n, αi, and βi and on
the equilibria for p1 and p2 (which are in turn a function of all the
parameters of the ODEs). The roots of Eq. 7 are:

s ¼ �1þ q; �1� q; �1þ iq; �1� iq; where q ¼ K
1
4:

If K > 1, there is only one root having positive real part, and it is
real. If K < 1, all of the roots have negative real part. Thus, the
system can only admit real exponential instability, i.e. instability
arising due to a real eigenvalue changing sign from negative to
positive. Figure 2a, top row, shows equilibrium conditions and
example trajectories in the p1 � p2 plane of the phase space for
different values of n (stable equilibria are represented as green
circles, unstable equilibria as red circles). The last column in
Fig. 2 shows the evolution of the number and stability properties
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a

+
-
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+

+

r1
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+
+

+
+

+

r1

p1
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-
-

+
r1
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c

+

+

p1 p1 p1
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0
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4

n

p2
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0

1
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4

n

p2
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0

1

2

3

4

n

p2

n=1 n=3 n=6 Bifurcation diagrams

Fig. 2 Feedback loops in two-gene systems. (a) Two-gene system with double positive feedback loop (positive
cycle). Pointed arrowheads indicate positive Jacobian interconnection entries, while hammer-arrowheads
indicate negative interconnections. (b) Two-gene system with double negative feedback loop, resulting in an
overall positive cycle. (c) Two-gene feedback interconnection with positive and negative regulation, resulting
in an overall negative cycle. In all simulations (nullclines in blue, sample trajectories in gray) the nondimen-
sional parameters are chosen as γ1 ¼ γ2 ¼ 0:2, α1 ¼ α2 ¼ 3, β1 ¼ β2 ¼ 1 and n is varied. The right
column shows the corresponding value of p2 equilibria for varying n, and their different pattern of transition to
instability (green dots are stable, red dots are unstable equilibria)

Feedback Loops in Biological Networks 203



of equilibria for p2 as n varies (note that other parameters could
have picked to study the presence of bifurcations).

IfH1 ¼ α1 1
1þpn

2
,H2 ¼ α2 1

1þpn
1
, network (Eq. 5) specifies a two-

gene double negative feedback loop, depicted in Fig. 2b, left. This
circuit is also known as toggle switch, an example of which is the
famous synthetic biological circuit by Gardner [15]; a natural
example of a toggle switch is the Cdc2-Wee1 network considered,
for instance, in [4]. We can repeat the same analysis performed for
the two-gene double positive feedback loop, and get similar results
in terms of admissible transitions to instability, which can be only
real exponential, regardless of the considered equilibrium
(Fig. 2b).

We now compare the previous two examples to the case when

Hill functions have opposite regulatory roles, i.e. H1 ¼ α1
pn
2

1þpn
2
an

H2 ¼ α2 1
1þpn

1
: the network can behave as a two-gene oscillator [22].

First, we observe that the Jacobian is still a sign definite matrix.
However, the “interconnection” terms @H1=@p2 and @H2=@p1, the
derivatives of the Hill functions, now have opposite signs, due to
the different slopes of such functions, and thus generate an
overall negative feedback loop (Fig. 2c). The equilibrium condi-
tions are now

p1 ¼ β1 γ1 þ α1
pn2

1þ pn2

� �
; p2 ¼ β2 γ2 þ α2

1

1þ pn1

� �
;

and admit a single intersection regardless of the value of αi, βi, and n
(Fig. 2c, central panels show the equilibrium conditions for
increasing values of n). The characteristic polynomial is

ðs þ 1Þ4 �K ¼ 0; where K ¼ β1β2
@H1

@p2

@H2

@p1
< 0: (8)

Since now K < 0, all of the roots of Eq. 8 are complex:

s ¼ �1þ qð Þ þ iq; �1� qð Þ � iq; �1� qð Þ þ iq; �1þ qð Þ � iq;

where q ¼ ð�KÞ14ffiffiffi
2

p :

As a consequence, only oscillatory unstable dynamics can arise,
rather than real exponential. Precisely, unstable oscillations do
arise when K < �4. As we can see by studying the original nonlin-
ear system, for any given value of n there is only one equilibrium,
whose stability properties can change, again, depending on the
values of αi and βi.

To summarize, the analysis of this simple two-gene system has
shown that, without a precise knowledge of the functions H1 and
H2, we can reach very strong conclusions regarding the possible
dynamic behaviors of the system. These conclusions are consistent
with Thomas’ conjectures [7], and do not depend on specific
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functions or parameter choices. Rather, they depend on the pres-
ence of positive or negative feedback interconnection among com-
ponents, thus on the presence of a positive or a negative cycle in the
Jacobian associated with the system. In particular, this example
clearly highlights that there is a relationship between Jacobian
cycles and admissible transitions to instability. A qualitatively similar
study was carried out and validated by building synthetic bacterial
circuits in [16]; analysis relied on the S-systems formalism [42].

4.2 Synthetic

Feedback in the MAPK

Pathway

The dynamic profile of gene expression coordinates spatio-
temporal processes in organisms. At the single-cell level, dynamics
of signaling components can dictate the dynamics of gene expres-
sion and control cellular entry into divergent cell fates. The MAPK
pathway in PC-12 cells provides a classic example of signaling
dynamics regulating cellular fate. In PC-12 cells, unique extracellu-
lar cues alter the MAPK network topology by inducing positive or
negative feedback loops leading to differential temporal profiles of
MAPK activation. Each temporal profile maps to a distinct and
divergent cellular behavior [33]. Synthetic switching of these topol-
ogies alters the dynamic profile and routes cells to the alternative
fate, suggesting that control of network topology and thus signal-
ing dynamics controls cellular fates (e.g., differentiation, division,
and apoptosis). Given the importance of cellular fate in fields such
as stem cell biology and cancer biology, synthetic circuits that can
control dynamic signaling and thus cell fate may provide useful
research tools as well as potential therapies.

Synthetic reshaping of dynamic signaling profiles in a MAPK
pathway has allowed the construction of pulse generators, accel-
erators, delays, ultrasensitive responses, and bistable switches [43,
44]. Construction of positive feedback loops that induce bistability
in a MAPK pathway was shown to be dependent on feedback
strength [44]. Additionally, components within the MAPK path-
way can be tuned to allow for the existence of bistability [45].

The yeast pheromone-responsive pathway is a canonical MAPK
pathway with a three-tiered MAPK cascade. Due to the genetic
tractability of yeast relative to mammalian systems, the pheromone-
responsive pathway, also called the mating pathway, has been
extensively analyzed experimentally and modeled computationally.
Signaling in the mating pathway is initiated by pheromone alpha-
factor (α), binding to a transmembrane receptor which initiates G-
protein signaling and a phosphorylation cascade from Ste4 to the
canonical scaffold-bound three-tiered MAPK cascade. As the out-
put of the cascade, the phosphorylatedMAPK Fus3 translocates the
nucleus, activating transcription factors and transcription at
mating-responsive genes including the F u s1 locus. The phospha-
tase Msg5 antagonizes (inhibits) signaling by dephosphorylating
Fus3. Activation of mating genes induces cell-cycle arrest, polarized
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cell growth, and fusion of haploid cells to form diploids with
opposite mating-type cells.

To synthetically rewire the topology of the mating pathway,
positive and negative feedback loops were constructed around the
native pathway in [25]. To construct feedback loops (Fig. 3), a
pathway-responsive promoter was cloned from the Fus1 locus
into plasmids. Ste4 overexpression was shown to initiate pathway
activation, positively regulating pathway activity. Thus, a positive
feedback loop was constructed by placing Ste4 under the regulation
of the Fus1 promoter. Conversely, overexpression of Msg5 attenu-
ated signaling, negatively regulating pathway activation. Pairing
Msg5 with the Fus1 promoter constructed a negative feedback
loop. Pairing positive and negative feedback constructs with
RNA-based transducers of varying activity generated constructs
with a range of feedback strengths. Experimentally, the strength
of positive feedback was shown to dictate the pathway sensitivity to
activation. Similarly, the strength of negative feedback correlated
with the degree of pathway attenuation.

To mathematically capture insights into the synthetically wired
system, a phenomenogical model of the MAPK pathway with syn-
thetic feedback was also constructed [25]:

dSte4

dt
¼ βSte4 � δSte4Ste4þ kpf

Fus1
npf

K
npf
M ;Fus1;pf

þFus1
npf

; (9)

dFus3

dt
¼ βFus3 � δFus3Fus3þ kα

αn

Kn
M ;α þ αn

þ kSte4
Ste4m

Km
M ;Ste4 þ Ste4m

� kMsg5Fus3
Msg5q

K
q
M ;Msg5 þMsg5q

;

(10)

dFus1

dt
¼ βFus1 � δFus1Fus1þ kFus3

Fus3p

Kp
M ;Fus3 þ Fus3p

; (11)

-

Ste4

Fus3

Fus1

Msg5

+
α

+
+

+ +

-
+

Fig. 3 Scheme of the engineered MAPK pathway in Eqs. 9–12. This scheme can
also be seen as a graph representing the sign-definite Jacobian. Orange arrows
indicate the synthetic feedback loops
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dMsg5

dt
¼ βMsg5 � δMsg5Msg5þ knf

Fus1
nnf

K
nnf
M ;Fus1;nf

þFus1
nnf

: (12)

Terms corresponding to the engineered positive and negative
feedback loops are highlighted inside boxes. It is an easy exercise to
compute the system’s Jacobian matrix; this matrix is sign definite,
meaning that the sign of each entry does not depend on the para-
meters chosen. Because of sign definiteness, the scheme in Fig. 3
can be also used as a “graph” representation of the Jacobian matrix
similar to those obtained in Fig. 2.

In the rest of this section we consider the cases where the
system is added exclusively one feedback loop, positive in the first
case (activation of Ste4 by Fus1), negative in the second (activation
of Msg5 by Fus1). With numerical simulations we will highlight the
potential for bistability of the system with positive feedback, and of
oscillations in the system with negative feedback. Unless otherwise
noted, we use the same parameters used in [25], which were fitted
to experimental data (see Fig. 6).

4.2.1 A Synthetic Positive

Feedback Loop Can Yield

Bistability

If we add exclusively a positive feedback loop to the system, Msg5
can be seen as an input (possibly constant or slowly varying) to the
main pathway (a scheme is in Fig. 4a). In the following, we indicate
the Msg5 input as u. We also assume that the inducer α is absent.
Thus, our equations reduce to:

dSte4

dt
¼ βSte4 � δSte4Ste4þ kpf

Fus1
npf

K
npf
M ;Fus1;pf

þFus1
npf

; (13)

dFus3

dt
¼ βFus3 � δFus3Fus3þ kSte4

Ste4m

Km
M ;Ste4 þ Ste4m

� kuFus3
uq

K
q
M ;u þ uq

;

(14)

dFus1

dt
¼ βFus1 � δFus1Fus1þ kFus3

Fus3p

K
p
M ;Fus3 þ Fus3p

; (15)

where again we highlight with a box the term introducing positive
feedback in the network. In the absence of α factor, the network
output self-activates to a high value due to the presence of feed-
back. This behavior is showed in the numerical simulations in
Fig. 4: increasing values of rate kpf results in stronger self-activation
of the pathway.

To explore the potential for bistability, as done in the previous
section we can find equilibrium conditions for Ste4 and Fus1:

Ste4 ¼ 1

δSte4
βSte4kpf

Fus1
npf

K
npf

M ;Fus1;pf þ Fus1
npf

( )
(16)
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Fus3 ¼ 1

δFus3 þ ku
uq

K
q
M ;u

þuq

βFus3 þ kSte4
Ste4

m

Km
M ;Ste4 þ Ste4

m

( )
(17)

Fus1 ¼ 1

δFus1
βFus1 þ kFus3

Fus3
p

Kp
M ;Fus3 þ Fus3

p

( )
: (18)

These equilibrium conditions depend on several parameters,
each affecting the number and stability properties of the
admissible equilibria. We focus our attention on the engineered
reactions creating the positive feedback loop. We find that parame-
ter KM, Fus1, pf is particularly important to achieve bistability; this
parameter represents the half-max activation value of Ste4 by Fus1.
The corresponding Hill coefficient is equal to 3, making the half-
max value act as an activation threshold for Ste4. Equilibrium
conditions Eqs. 16 and 18 are plotted in Fig. 4 for different values
of KM, Fus1, pf (kpf ¼ 2). For the chosen parameter set, bistability is
achieved only within a range of values of KM, Fus1, pf.
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Fig. 4 Positive feedback pathway analysis. (a) Scheme of the network with positive feedback.
(b) Concentration of Fus1 as a function of time, for different values of kpf. (c) Equilibrium conditions (blue),
their intersections (green, stable points; red, unstable points), and sample trajectories (gray) in the plane
Fus1-Ste4. Bistability can be achieved when KM, Fus1, pf has values around 0. 5–0. 7
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4.2.2 A Synthetic

Negative Feedback Loop

Has the Potential to Yield

Oscillations

We now numerically simulate the pathway in the presence of an
engineered negative feedback loop only. In this case, Ste4 can be
considered an external input, which we now call w. We assume that
α factor is present. The ODEs are:

dFus3

dt
¼ βFus3 � δFus3Fus3þ kα

αn

Kn
M ;α þ αn

þ kw
wm

Km
M ;w þ wm

� kMsg5Fus3
Msg5q

Kq
M ;Msg5 þMsg5q

;

(19)

dFus1

dt
¼ βFus1 � δFus1Fus1þ kFus3

Fus3p

K
p
M ;Fus3 þ Fus3p

; (20)

dMsg5

dt
¼ βMsg5 � δMsg5Msg5þ knf

Fus1
nnf

K
nnf
M ;Fus1;nf

þFus1
nnf

: (21)

The box highlights the negative feedback term; Fig. 5a shows
the topology of this pathway, which corresponds to the sign pattern
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Fig. 5 Negative feedback pathway analysis. (a) Scheme of the network with engineered negative feedback. (b)
Concentration of Fus3 as a function of time, for different values of knf. (c) Equilibrium conditions (blue), their
intersections (green, stable points; red, unstable points), and sample trajectories (gray) in the plane Fus1-
Msg5. Local oscillations can be achieved for high values of knf and nnf. (Color figure online)
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of the Jacobian matrix. Equilibrium conditions can be derived as
done for the positive feedback pathway at Eqs. 16–18. To explore
the potential for oscillations in the presence of negative feedback,
we focus again on the parameters of the engineered reaction
controlling Msg5 as a function of the output Fus1. Equilibrium
conditions always intersect at one individual point, as shown
in Fig. 5c. We find that for increasing values of both the rate
knf and the Hill coefficient nnf, the single equilibrium becomes
unstable, with complex conjugate eigenvalues which correspond
to local oscillations. The behavior in time of the output Fus1 is
shown in Fig. 5b for a range of values of knf, and high nnf ¼ 6. For
the chosen parameter set, our numerical analysis reveals that an
extremely high value of knf and nnf (experimentally not
achievable) has the potential to yield oscillations, however their
amplitude is limited and their frequency is very high. This means
that experimentally it would be difficult to achieve oscillations in
this particular synthetic pathway. More systematic exploration of
the system’s parameter space may reveal the existence of operating
conditions that can yield more realistic oscillations.

5 Conclusions

In this chapter we have provided a general overview of the role of
feedback in molecular networks. We have introduced simple yet
powerful methods commonly used in dynamical systems and con-
trol theory to identify the behavior of a nonlinear dynamical system
around its equilibria. Feedback loops dramatically affect the possi-
ble dynamic outcomes of a system: we showed that in some cases
such outcomes may be determined exclusively by the type of feed-
back (positive or negative) present in the network, regardless of the
parameters. We address the reader to [39] for further analysis on
this topic. In some cases, parameters responsible for a bifurcation
can be easily identified and tuned to achieve the desired behavior.
These ideas have been largely exploited in the design of synthetic
gene networks in the last decade [15, 16, 19, 20].

Throughout the chapter, we also used the MAPK pathway as an
example of a system that can be successfully modeled with ODEs [5,
6, 25, 29] and lends itself well to the linearization analysis we pre-
sented.We focused on a recently engineeredMAPKpathway in yeast,
where positive and negative feedback loops were engineered using
inducible promoters and RNA transducers [25]. Through numerical
simulations,we showed that positive feedback can yield bistability and
negative feedback can yield oscillations. We leave it as an exercise to
the reader to verify the exclusive potential for bistability or oscillations
in the two engineered versions of the network [39], following the
steps outlined in Subheading 4.1 (Fig. 6).
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Fig. 6 Parameters for the MAPK pathway model with upper (UB) and lower (LB) bounds for fitting
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6 Notes

1. We will carry out the nondimensionalization procedure for the
toggle switch network, leaving the derivation for the other
cases to the reader. We follow nondimensionalization steps
similar to those proposed in [19] and [22, 24]. Consider the
(dimensional) model:

τ _R1 ¼ c1 þ a1
1

Kn
M1 þ Pn

2

�R1; _P1 ¼ kpR1 � kdP1; (22a)

τ _R2 ¼ c2 þ a2
1

Kn
M2 þ Pn

1

�R2; _P2 ¼ kpR2 � kdP2: (22b)

Here ci is the “leak” transcription of RNA. For simplicity, we
assume that the translation and degradation rates for the pro-
teins are the same. Constant τ is the mRNA half-life in the
system. ConstantsKMi represent the number of proteins neces-
sary to half-maximally repress Ri. Finally, assume the transla-
tion efficiency of each RNA species is given by �pi, which
corresponds to the average number of proteins produced by a
single RNA molecule.

We define the nondimensional variables: ri ¼ Ri=�pi,
pi ¼ Pi=KMj , (i, j) ∈ {(1, 2), (2, 1)}. We rescale time as
~t ¼ t=τ, and also define the nondimensional parameters:

γi ¼
ci
�pi
; αi ¼ ai

�pi Kn
Mi

; βi ¼
kp �pi

kd KMj
; T ¼ 1

τkd
:

The resulting nondimensional equations are:

_r1 ¼ γ1 þ α1
1

1þ pn2
� r1; T _p1 ¼ β1r1 � p1; (23a)

_r2 ¼ γ2 þ α2
1

1þ pn1
� r2; T _p2 ¼ β2r2 � p2; (23b)

Finally, if we assume T � 1, we get a system in the same form as
Eq. 5.
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